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Abstract

This paper examines the plausibility of a thesis of probabilism that is based on
intuitionistic logic and exposits the difficulties faced by such a program. The
paper starts by motivating intuitionistic logic as the logic of investigation along
a similar line as Bayesian epistemology. It then considers two existing axiom
systems for intuitionistic probability functions — that of Weatherson (2003) and
of Roeper and Leblanc (1999) — and discusses the relationship between the two.
It will be shown that a natural adaptation of an accuracy argument in the style
of Joyce (1998) and de Finetti (1974) to these systems fails. The paper concludes

with some philosophical reflections on the results.

Intuitionism in mathematics refers to a class of programmes, more or less following
the tradition of Brouwer, that challenges the classical way of viewing what mathemat-
ics does and what is allowed to be taken for granted in the practice of mathematics.
Famously, intuitionism rejects the classical law of excluded middle (LEM), which states
that PV —P can be asserted truthfully at any time, regardless of what P is. Intuition-
istically, P can only be asserted if there is some constructive procedure that establishes
P, whereas =P can only be asserted if there is some constructive procedure that leads
one to conclude, from P, a contradiction®. If one cannot accomplish either of these for
some given P, then one cannot assert PV —P.

A major motivation behind this view in the philosophy of mathematics is that, if one
finds the idea of mathematical objects existing in an acausal Platonic heaven problem-

atic, then one is likely to also find the claim that we can make true or false statements

!The gloss here follows (roughly) the interpretation of intuitionistic logic found in Heyting (1956).
Different schools of intuitionism and constructive mathematics at large differ on what counts as a
legitimate constructive procedure, but this is beyond the point of the current paper.
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about mathematical objects we have never thought about before problematic. Instead,
intuitionists hold that statements about some generic, unknown mathematical object
do not have truth values until we can have a reasonably direct access to it through
construction.

One might have similar worries for sentences in non-mathematical domains. For
example, one might think that future contingents are, at the present time, neither true
nor false. This is raised by Weatherson (2003) as one of the considerations that might
cause one to question the law of excluded middle as it applies to future contingents. It
is not true, now, that there will be a sea battle tomorrow. Neither is it true, now, that
there won’t be. Hence, one cannot truthfully claim, now, that “either there will be,
or there won'’t be, a sea battle tomorrow”. The view is that one should be allowed to
refrain from making claims about matthers about which one has no evidence one way
or another.

Intuitionistic logic thus has a natural, albeit underexplored, application to the
epistemology of evidence evaluation. “Subjective probabilistic semantics should yield
intuitionism”, declares Harman (1983), “since what settles a bet is not the mere truth
or falsity of a proposition but rather the discovery that the proposition is true or the
discovery that it is false”. Similarly, van Benthem (2009) observes that intuitionistic
logic registers “procedural information about our current investigative process” (p.255,
emphasis original). The thought is that the kind of “knowledge gap” that exists before
we have complete information on a subject matter is better reflected using a logic that
allows “truth value gaps” in a similar way.

In formal epistemology, the well established Bayesian tradition studies evidence
evaluation by developing formal procedures that guide one’s treatment of each piece
of relevant information. Central to Bayesian epistemology is the thesis of probabilism,
which states that a rational agent should have a credence function that obeys the
laws of probability theory (e.g. Jeffrey, 1992). Little attention has been paid to the
logic underlying such functions, but it has traditionally been assumed that the logic
is classical. LEM is either listed as an axiom (such as in Joyce, 1998) or derivable as
a consequence of defining probability functions from a Boolean algebra. Let us call
classical probabilism the thesis that requires a rational agent’s credence function to be
a classical probability function.

The current paper investigates the plausibility of an intuitionistic probabilism — one

that requires a rational agent’s credence functions to be intuitionistic probability func-
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tions. It does so by considering two existing axiom systems for intuitionistic probability
functions: that of Weatherson (2003) and of Roeper and Leblanc (1999). The paper
examines the relationship between these two systems and the difficulties of adapting an
accuracy argument in the style of Joyce (1998) and de Finetti (1974) to these systems.
It will be shown that neither of these two systems allows a straightforward adaptation
of the accuracy argument. This is partly due to the fact that there exist infinitely many
valuations even just for finitely many proposition letters (a result by Godel, 1986, p.223
ff.). Having infinitely many valuation functions blocks the geometric intuition that is
necessary for the accuracy argument, because the argument relies on the existence of
some Euclidean-like distance that defines the inaccuracy measure. This feature is lost
in the transition from a space of finite dimensions to one of infinite dimensions.

The paper is organized as follows. Section 1 motivates the attempt at adapting
intuitionistic logic to Bayesian epistemology. Section 2 presents a brief formal intro-
duction to intuitionistic logic and its semantics. Section 3 introduces the two axiom
systems mentioned above. Section 4 discusses a natural way of generalizing the accu-
racy argument to the system of intuitionistic probability functions provided in Roeper
and Leblanc (1999) and argues that the natural proof strategy fails. It will be clear
how the failure of this adaptation also precludes the success of an adaptation of the

Weatherson axioms. Section 5 concludes with philosophical reflections on the results.

1 Intuitionism in epistemology

As briefly mentioned before, intuitionism in mathematics is (partly) motivated by a
skeptism over mathematical Platonism. The thought is that we would like to ground
the truth of mathematical claims not in some facts in a mind-independent world of
abstracta, but in some mind-dependent processes like proofs and constructions. Re-
latedly, if one would like to reject the mind-independent existence of mathematical
entities, then one would not want the meaning of mathematical claims to be depen-
dent on these (non-existent) entities in the same way that the sense of empirical claims
seem to depend on observable objects or properties. To address this worry, the in-
tuitionis holds that “the meaning of a sentence is to be given, not by the conditions
under which it is true, where truth is conceived as a relationship with some external
reality, but by the conditions under which it is proved, its proof conditions — where a

proof is a (mental) construction of a certain kind” (Priest, 2008, p.138).
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We may take the same considerations outside of mathematics and talk about ev-
idence instead of constructions and verification instead of proofs. That is, we may
require the assertion of a claim to be based on evidence in a strong sense, such that the
absence of evidence does not count as evidence of absence. Similarly, we might want
to have a theory of meaning where the meaning of a sentence is given not by its truth
conditions, but by its verification conditions.

This last consideration is also discussed in Weatherson (2003), who observes that
“la] standard objection to classical Bayesianism is that it has no way of representing
complete uncertainty” (p. 114). Even if I have no evidence for or against p, the classical
Bayesian still requires me to assign credence 1 to the classical tautology pV —p. By the
Axiom of additivity, this means I must have non-zero credence assignment to p and to
—p. If one does not want to give up additivity, one needs to seriously consider giving
up p VvV —p as a tautology.

Here is another way of understanding the intuitionistic worldview. It is often said
that classical logic is the logic of truth. One way to think about classical possible worlds
is to see each world as a full description of a possible state of affairs or a maximally
consistent set of true sentences. That is, for every proposition, if it is not true at
a world, then its negation is true at that world (hence LEM). A classical world is a
possible version of reality, where every question has a definitive answer. Conversely,
an intuitionistic world is a state of knowledge during an investigation, where one has
a consistent set of beliefs but also open questions that need to be answered.

It is worth noting that intuitionistic logic is not the only, or even the primary,
logic that is used to handle truth gaps in the literature. There are a number of three-
valued logics that were designed to manage neither-true-nor-false sentences like fictional
contingents or future contingents as well as both-true-and-false sentences like the Liar
sentence (see, e.g., Priest, 2008). As we will discuss later in the paper, probabilism
behaves much better with finitely valued logics than it does with intuitionistic logic.

Nevertheless, intuitionistic logic has a natural place as the logic of investigation. A
truth gap in a fiction, such as the colour of Sherlock Holmes’s shirt on a particular day,
has a certain sense of inevitability to it — that is, it seems to be the kind of thing that
we cannot know in principle, because there is nothing to be known. Similarly, people
who reject classical logic for future contingents tend to do so because they believe that
future contingents do not yet have a truth value at all and so, again, are in principle

unknowable. Both of these ways of seeing truth gaps may motivate the introduction
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of a third truth value — an in principle unknowable value — which we can then develop
a logic for. However, an open question in an investigation is not especially different
from an answered question. They are formulated in similar ways and, presumeably,
call for the same kind of answers or answer strategies. The only difference is that one
is currently known and the other is currently unknown. Representing an open question
as a lack of truth values in the intuitionistic sense rather than as something completely
different in three-valued logics seems much more natural.

The above reasoning is not meant to be a knockdown argument for the superiority
of intuitionistic logic over three-valued logics in epistemology. Rather, it is meant to
motivate intuitionistic logic as a natural candidate to consider as a replacement of
classical logic.

To conclude this section, let me lay out the motivation once again: the central
feature of Bayesian epistemology is its ability to guide investigation and the resulting
changing of beliefs. The thesis of probabilism states that an agent’s system of cre-
dences needs to satisfy particular constraints in order to be successful in the Bayesian
framework. While classical logic is often said to be the logic of truth, intuitionistic
logic can be seen as the logic of investigation. Consequently, it is natural to examine
the plausibility of probabilism with intuitionistic logic as its underlying logic. The next
section lays out both the formal framework and the philosophical conceptualization of

what an intuitionistic probabilism might mean.

2 Kripke semantics for intuitionism

The use of Kripke semantics for intuitionistic logic is controversial. For example,
Dummett (1977, p.166) writes?:

Since intuitionistic logic is founded on a rejection of the whole notion of
objectively determined truth-values independent of our capacity for recog-
nizing them, it does not appear as if valuation systems are going to be
of any help towards formulating notions of completeness for intuitionistic

logic.

Later in this section, however, I will attempt to motivate the adoption of Kripke

semantics along the line of intuitionistic logic as the logic of investigation sketched out

2Troelstra and van Dalen (1988, p.75) express a similar worry about Kripke semantics in particular:
that it does not connect to the BHK interpretation of intuitionistic appoaches to mathematics.
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above. For a more extensive introduction to either Kripke semantics or other semantics
for intuitionism, see Troelstra and van Dalen (1988) and Chagrov and Zakharyaschev
(1997, Ch.2).

Formally, a Kripke model is given by a triple K = (K, <,IF), where K is a set of
worlds or nodes, < is an asymmetric accessibility relation among those worlds, and I
is a forcing relation between worlds and propositions. A typical Kripke model is often
drawn as a tree structure®, where the accessibility relations “grow” only upward. An

example tree is given below?.

1IFP 2

N

0

The truth conditions for all nodes k € K obey the following rules (see also Kripke,
1963; Troelstra and van Dalen, 1988, p.77).

e kIF P and k <k implies k' IF P.

e kIFAABifand only if kI A and £k IF B.

o kIFAV Bifandonlyif kIF A or kIF B.

e kI A — B if and only if for all ¥’ with £k <k, if £’ IF A then k' IF B.
e kIF —Aif and only if for all &’ with k < k', k' ¥ A.

In the above toy model, we see that P and hence PV ) (where @ is arbitrary) are
both true at world 1. However, =P is true at world 2 but not at world 0. This means
that PV =P is not true at world 0.

Connectives like V and A are treated straightforwardly in ways similar to classical
logic. The material conditional —, however, requires special care. Intuitionistically,
P — @ is true at a node just in case, for every node above it, if P holds then ¢ holds.
One side effect of this definition is that the equivalence between P — () and —P V @)

is not a valid in intuitionistic logic. Consider the following counter model:

3Strictly speaking, Kripke models are not proper trees, since it is permissible that the branches
merge. Since nothing hinges on this technical point, we will occasionally refer to these models as trees
for ease of presentation.

4The worlds need not be, and often are not, labelled. I have labelled them here for clarity of
explanation.
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4 5IFP,Q

N

3

In this model, P — @ holds on all three nodes, and yet neither =P nor () holds on
node 3, which means =P V () does not hold on node 3.
Similarly, P A @ is not equivalent to =(=P V —=Q) like the classically valid De

Morgan’s law. To see this, consider the following counter model:

7IF P,Q

|
6

Here, =P V =@ does not hold at 6, or 7, which means —(=P V =(@)) holds at 6. But
P A @ does not hold at world 6.

The feature that A and — are not reducible to = and V will turn out to be significant
for our discussion of Dutch book arguments later. For now, let us focus on how a
probability theory can be built on intuitionistic logic.

To see how this semantics fits in with our narrative about investigations, notice
first that the nodes at the end of the branches are classical. That is, every proposition
is either forced on that node, or its negation is. Further, if node j follows node 1,
or ¢ < j in our notation, then the set of propositions true in 7 is a subset of the
propositions true in j. A branch, then, can be seen as an investigative path, where
more and more information are acquired as we move from node to node, and the path
leads to a possible state of affairs. Finally, we can interpret a tree as a theory (in the
nontechnical sense) about the different ways in which an investigation may unfold.

In the classical setting, each world assigns a valuation 0 or 1 to each proposition p.
Suppose a number n of worlds are indistinguishable to me (i.e., my information state
is insufficient to pick out the real world), and they differ on their valuations of p, then
I assign a probability of p between 0 and 1. Formally, suppose we have vy,... v, as
valuations of n worlds. Suppose further we have constants ay,... ,a,, with 0 <a; <1
and )" a; = 1. Then, classically, Pr(P) = Y, a;u;(P) is a probability function.
This type of weighted averaging of valuations is often called convex combinations,
or probabilistic averages, of valuations. These functions form the convexr hull of the
valuations, which is the smallest convex set containing the valuations (Aliprantis and
Border, 2006, p.182-183). It is a key insight of de Finetti (1992) that the “coherent”

credence functions are exactly those that form the convex hull of classical truth values.

7



Intuitionistic probablism

This grounds the important geometric intuitions that support the later stages of the
accuracy argument (e.g., Joyce, 1998, p.582-3 and Pettigrew, 2016, p.82, 107 ff.).

Moving to the intuitionistic setting, we can make sense of probability in a similar
way. We can treat each tree as a world in the sense that we can see a number of different
investigative paths being compatible with our current state, and they may lead to a
number of different conclusions. However, I may be wrong about what the current
state is (i.e. which tree structure I'm working with), as well as which investigative step
I'm currently at (i.e., which node I'm on).

In the current paper, I will treat convex combinations of intuitionistic valuation
functions in what I consider as a natural way, following the above narrative. Let w be
valuation functions on nodes. For any proposition P on any node ¢ of a Kripke tree,
w;(P) = 1 if that node forces P, w;(P) = 0 if it does not. For a Kripke tree with
m many nodes, let there be by,... by, with 0 < b < 1 and >." b = 1, let us set
v(P) =>_" bjw;(P). That is, v of P of a model is the convex combination of the pure
world valuation of the nodes. We then define probability of P as convex combination
of v’s of different models in the same way: Pr(P) =", a;v;(P) for 0 < a; < 1 and
> % a; = 1. Philosophically, one can interpret this as an agent’s not being able to
discern which structure is the true structure and which world in that structure is the
true world. In what follows, I call any functions that can be derived in the above way

convexr combinations of intuitionistic valuation functions.

3 Two systems of intuitionistic probability

This section introduces two existing sets of axioms for intuitionistic probability func-
tions, and discusses their relationship.
Weatherson (2003) introduces a 4-axiom system that he adapts from the classical

3-axiom system of Kolmogorov (1960) they are as follows:

o (PO)P(T) =1

(P1) P(L) =0

(P2) If A+ B then P(A) < P(B)

o (P3) P(AV B) = P(A) + P(B) — P(A A B)
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He then develops a Dutch book argument and a converse Dutch book argument for
these axioms. I will briefly mention the implications of these arguments later in this
section. It is worth noting that, in Weatherson’s set up, if I buy into a bet on p and
—(p V —p) happens, then I lose the bet on p. This way of setting up the bet blurs
the distinction between intuitionistic logic and three-valued logics. As we will see, this
difference is significant for accuracy argument.

Another feature to note about these axioms is that they are fairly opaque. With
classical probability functions, one only needs three axioms describing the behaviour
of = and V. Classical logic is semantically complete with just those two connectives.
However, as we saw in section 2, connectives like — and A are not interdefinable with
- and V. We should expect an adequate axiom system of intuitionistic probability
function to also guide us on our treatment of those connectives.

The axiom system provided in Roeper and Leblanc (1999) is significantly more
expansive for just this reason. Their system contains 9 axioms (listed in Appendix A).
In addition to giving explicit rules governing connectives like A and —, these axioms

also have the following nice properties (Roeper and Leblanc, 1999, p.229, 231):

Theorem 3.1 (Weak Soundness). If P is any absolute probability function for intu-
itionistic propositional logic and A any theorem of that logic, then P(A) = 1.

Theorem 3.2 (Weak Completeness). If A is a statement of L that is not a theorem
of intuitionistic propositional logic, then there exists an absolute probability function P

for intuitionistic propositional logic with P(A) # 1.

More relevant to our narrative, these axioms — I shall call them the RL axioms —
are developed using a Kripke semantics in the way described in section 2 above. In
the process of proving the weak completeness theorem, Roeper and Leblanc showed
that the average of all the nodes on a Kripke tree satisfies the RL axioms. With the
following proposition (proved in Appendix A)

Proposition 3.3. If P,... P, ... satisfy the RL axioms, and ay,...a;,... are such
that 0 < a; <1, and > ;2 a; =1, then P =>"" a;P; also satisfy the RL axioms.

one can conclude that any probability function generated in the way described in
section 2 satisfy the RL axioms.
We now have two axiom systems that are both well motivated as candidate ax-

iomatizations of intuitionistic probability functions: the Weatherson axioms for their
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natural adaptation from classical probability axioms, whereas the RL axioms for their
nice properties relating to Kripke semantics for intuitionistic logic. Unfortunately,

these two axiom systems do not coincide (proved in Appendix B):

Proposition 3.4. Any function that satisfies the RL azioms also satisfies the Weath-

erson four axioms, but not vice versa.

As briefly mentioned before, the Dutch book arguments presented in Weatherson
(2003) do not distinguish between intuitionistic logic and a three-valued logic where
the third value behaves like falsity. But if one does find his arguments convincing, the
above proposition would lead one to conclude that the RL axioms are necessary but
not sufficient to define intuitionistic probability functions. As we shall see in the next
section, this question becomes a lot more complicated once we dig deeper into exactly

what we take an intuitionistic probability function to be.

4 Accuracy argument

This section examines the prospect of an accuracy argument for intuitionistic probabil-
ism. I first identify key elements of the classical accuracy argument, before providing
a detailed explanation on how one of them fails for one system of intuitionistic prob-
ability. I conclude this section with some remarks on additional difficulties faced by
intuitionistic probabilism.

The accuracy argument for classical probabilism can be roughly separated into
three steps (cf. de Finetti, 1992, Joyce, 1998, Pettigrew, 2016). Firstly, one shows
that classical probability functions are exactly those that are convex combinations of
classical valuation functions. Secondly, one shows that one can understand inaccuracy
as a “distance” measure between a credence function and a valuation function. Finally,
one observes that, due to convexity of the probability functions, any credence function
that is not probabilistic has a probabilistic projection that is closer (by the inaccuracy
distance measure) to all the valuation functions. The below argument concerns the
first step of this argument for the RL axioms.

Classically, the axioms of Kolmogorov coincide with convex combinations (also
often called “probabilistic combinations”) of classical valuations because the worlds
are taken to form a Boolean algebra. Intuitionistically, however, this has to be argued

for. This is because intuitionistic valuations are interdependent among worlds. In fact,

10
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one can show that the functions defined by the RL axioms do not coincide with convex
combinations of intuitionistic worlds, at least in the way defined in section 2.

To see this, we need to look at another standard result from intuitionistic logic.
Given that both modal logic and intuitionistic logic can be based on Kripke frames, it
should not be surprising that there are similarities between the metatheories of these
two branches of nonclassical logic. In particular, just as there are metatheorems in
modal logic which relate validities to frame conditions, so there are metatheorems in
intuitionistic logic which relate validities to frame conditions. One of these states that
one can define a formula (cf. Chagrov and Zakharyaschev, 1997, p.44, Proposition
2.40)

Yn=poV (Po—=>p1) V- V((poA-Apn-1) = pn) (1)
for each n > 1, such that:

Proposition 4.1. A frame K = (W, R) wvalidates @, iff each rooted subframe of K

contains < n points.

Using this formula, we can find a probability function [P that satisfies the RL axioms,
but cannot be written as a convex combination of intuitionistic valuation functions.
The construction of this probability function proceeds as follows. Firstly, find a series
of rooted frames, K, Ks,..., each K; containing exactly ¢« many nodes. For each
frame K, define a probability function P, such that it satisfies RL axioms, and
Pk, (pi—1) < 1, where ¢ is chosen to be some classical contradiction. This is possible
for all 7, since the rooted frame K; has more than ¢ — 1 many nodes, and hence does
not validate ;1 by Proposition 3.4.

Define P = > 7% 27°Pg,. Since 0 < 27° < 1 and Y °,27" = 1, and all P,
satisfy RL axioms, IP satisfies RL axioms by Proposition 3.3. Suppose, for the sake of
reductio, that P can be written as convex combination of valuation functions v;. That
is, there are finite models Ly, ... , L, such that vy, ... vy are valuation functions of
Ly,...,L, in the way described in section 2.2. By reductio hypothesis, P = """ | a;v,
for some 0 < a; < 1 and Z?:l a; = 1. Each L; has some number of nodes that is
less than some large natural number N. By Proposition 3.4, L, ... L, all validate py.
This means that each valuation function has to assign 1 to ¢y, and so P(¢yn) = 1.
However, we have defined P = »~°°, 27" P, such that P, (pn) < 1. We arrive at a

contradiction.

11
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The above serves as a proof for the following theorem:

Theorem 4.2. There exists a function P that satisfies the RL azxioms for intuition-
istic probability functions, but is not in the convex hull of the intuitionsitic valuation

functions.

Together with Proposition 3.4, we arrive at the following conclusion: the convext
combinations of intuitionistic valuations form a proper subset of functions satisfying the
RL axioms, which in turn form a proper subset of functions satisfying the Weatherson
axioms.

How should we make sense of the above result? A modest conclusion is that the RL
or the Weatherson axioms for intuitionistic probability and the valuation functions as
defined in section 2 do not fit together in the way classical accuracy argument demands.
This might mean that we need to add additional axioms to the RL system, or that there
is a better way of defining intuitionstic valuation functions, or that the intuitionistic
accuracy argument, if there is one, is radically different from its classical counterparts.

Moreover, there is something intrinsically unfitting between the ideas of intuition-
istic epistemology and accuracy dominance. Suppose we have somehow bypassed the
above problem, and established that intuitionistic probability functions are exactly
those that are convex combinations of intuitionistic valuation functions, however de-
fined. The next step should be to define some kind of “distance from the truth”
measure that we then argue to be shorter for elements of the convex set than elements
from outside. In classical probabilism, the preferred score is the “Brier score”, which
is defined as (v(P) — ¢(P))? for any credence function ¢, valuation function v, and
proposition P. For example, if I give P a probability of 0.6 and P is in fact true, then
the inaccuracy measure for my credence is calculated as (1 — 0.6)? = 0.16.

The problem with generalizing something like the Brier score to the intuitionistic
setting is that there are infinitely many intuitionistic valuations, even when there are
only finitely many atomic propositions (Godel, 1986, p.223 ff.). Hence, the natural
geometric intuitions which motivate the Brier score are not obviously available in the
intuitionsitic setting. To see why, consider how we visualize the “inaccuracy distance”
between an estimation of a proposition and the possible valuations of that proposition:
we usually see the two possible valuations T and F' as the end points of the two axis on
a two-dimensional plain, where the points on the plain represent the agent’s crendence

on the truth and falsity of that proposition. The “distance” between a credence and

12
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the true answer is then understood as the geometric distance between the two points®.
This is the most natural way of understanding what is meant for a credence judgment
to be “closer to” or “further away from” a valuation. As our world includes more and
more sentences, the dimension of this geometry increases. However, as long as we don’t
have infinitely many valuations (which can be guaranteed, classically, by only having
finitely many propositions), the same geometric intuition holds. The transition from
this straightforward intuition on Euclidean distance to the case of infinite dimensions is
a much more radical one, but it is one that an adequate adaption of accuracy argument

to intuitionistic probabilism needs to face.

5 Concluding remarks

Those who would like to investigate non-classical probabilism are likely to be moti-
vated by skepticisms over future contingents or completely unknown propositions in a
way discussed in section 1. One key difference between someone who is epistemically
concerned in this way and someone following the traditional mathematical intuitionism
line is that, for the epistemist, the world is still fundamentally classical. Consequently,
a successful thesis of probabilism has to assess the performance of probabilistic credence
functions against a classical world. Intuitionistic logic is much more faithful to the di-
alectic of an incomplete investigation in a classial world than the kind of three-valued
logics investigated in Williams (2012), where the world is treated as three-valued as
well. This unique philosophical advantage is, I believe, largely responsible for the for-
mal difficulties witnessed in this paper. It is much easier to say “the world is n-valued
and so our credence functions should base on an n-valued logic” than it is to match
an infinite-valued credence function with a bivalent world. Of course, all the formal
difficulties are not meant to discount the philosophical considerations associated with
this narrative. The lesson might just be that we should radically restructure what we
think arguments for probabilism should be like if we want to develop an intuitionistic
probabilism.

On the other hand, one might worry that there exists a kind of “double-counting”
with this approach. Suppose I receive a piece of information, p, that is supposedly rel-
evant to some other proposition, ¢, how should I adjust my assessment of ¢7 Bayesian

epistemology suggests that I raise or lower my existing probability of p, whereas intu-

For a more detailed exposition on scoring rules, see Pettigrew (2016).

13
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itionistic logic following the narrative of the current paper suggest that I, as it were,
add p to my g¢-information collection. Once I finish my collection, I can declare ¢ true
(or false). These two procedures seem to be parallel ways of achieving the same end. A
forciful combination of them may create limitations that neither procedure possesses
on their own.

In this paper, I started by drawing attention to a natural connection between in-
tuitionistic logic and epistemology, and used it to motivate a thesis of probabilism
where the underlying logic is intuitionistic. I then described intuitionistic semantics
and pointed out some difficulties in defining intuitionistic probability functions. After
that, I took a closer look at the axioms provided in Weatherson (2003) and Roeper
and Leblanc (1999), and discussed the relationship between the two. Finally, I showed
how one natural adaptation of the accuracy argument to intuitionistic probabilism fails
for both of these systems. I ended the paper with some philosophical advantages and

reservations on the project of intuitionistic probabilism.

Appendix A

Let L be a set of propositions in a language. Roeper and Leblanc (1999) list the

following 9 axioms for what they call absolute intuitionistic probability functions.
AIl. 0 < P(A)
Al2. IESE{P(A)} =1
AT3. %QE{P(A A B)} = P(A)
Al4. P(ANB) < P((AANB)AB)
AI5. P(AN(BAC))=P(AN(CAB))
Al6. P(AN(BA(CAD))=PAN({(BANC)AD))
AI7. PIAN(BVC(C))=PAANB)+P(ANC)—P(AN(BACQ))
AI8. P((ADB)ANC) = IB?z({P(C’ AND)IP((DNA)ANB)=P(DANA)}
AI9. P(AN-B) = r(rjlgi({P(A ANC)P(CAB)=0}
The goal of this appendix is to show the following

14
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Proposition (3.3). If Pi,... P, ... satisfy the RL axioms, and ay,...a;,... are such
that 0 < a; <1, and >"° a; =1, then P = > a;P; also satisfy the RL azioms.

Proof. AI1 and AI2 are obviously satisfied by P.

For AI3, observe that

max{» a;P;(AAB)} <) max{a; (AN B)}
=1 =1

BelL

Then we have
2 max{a;P,(A A B)} = 2; aimax{Pi(A\B)} = z; a; P;(A)
This means

max{P(AAB)} = Iggg{; a;Fi(ANB)} < ; a;Fi(A) =P(A)
For the other direction, we have
P(A) =) a;P(A) =) aP(ANA) <max{) aP(AANB)} = max{P(A A B)}

BeL
i=1 i=1 i=1

The proofs of AI4-7 are similar. I will give the proof of AI7 in detail as illustration.

ANB)+PANC)—PAN(BACQ))

a; P (AN (BAC))

I
. =)
Me =

@
Il
=

a;P(ANB)+Y aP(ANC) -

e o)
=1 =

1

a;(P(ANB) + P(AAC) — B(AA(BAC)))

M

1

<.
I

a; (AN (BVC))

NE

1

AN (BVQO))

7

—~

For AI8, consider Lemma 9 of Roeper and Leblanc (1999, p.226), we have P(((A D

15
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BYNA)ANB)=P((AD B)AA).
Setting D = A D B, we have P(D A A) A B) = > 2, a; (DN A)AB) =
Yoo, a;P(DANA)=P(DAA) by Lemma 9. This means

P(ADB)ANC)=P(DAC) < I}}gf{P(O AD)P(DNA)YAB)=P(DAA)}

For the other direction, consider a D that satisfies P((D A A) A B) = P(D A A).
This means >~ a,P;(DANA)AB) =", a;P,(D A A). First, we need to show that
for each i, P,((DANA)AB) = P,(D A A).

To see this, consider Lemma 1 of Roeper and Leblanc (1999, p.225), which states
P(ANB) < P(A). This means P;((DAA)AB) < P,(D A A) for each P; satisfying the
RL axioms.

Let I ={i: B(DANA)ANB)=P(DANA)}and let J ={j: P,(DANA)AB)<
P;(D AN A)}. Since the numbers are all non-negative, we have >_.° (DA A) A B) =
> ict BUDANA)AB)+3 " ; Pi((DAA)AB) and likewise > 22, P(DAA) =7, Pi(DA
A) + >, Pj(D A A). By hypothesis, the two sums indexed by i € I are equal. But
then we are left with >, P;((D A A) A B) =% .; Pj(D A A). This means that the
set J must be empty. Namely, P;((D A A) A B) = P,(D A A) for all i.

We now have that, for all D with P((D A A) A B) = P(D A A), we must have
P,((DNA)AB) = Pi(DAA) for all i for that D as well. Since all P; satisfies AIS8,
we have P,((A D B) A C) = maxpe{P;(C A D)|P,((D A A) A B) = P(D A A)}. This

means
Zal "((AD B)AC) Zlairggic{]%(C/\D)\B((D/\A)/\B):B-(D/\A)}

> Iggf{; a;Pi(C A D)|F((DANA)ANB) = Pi(DNA)}
P(ADB)AC) > rggzc{IP’(C AD)P(DNA)AB)=P(DAA)}
For AI9, since we have =B = B D L. By AI8, we have P(AA (B D 1)) =

maxcer{P(A A C)|P(C ANB)=P(CAB)AL)}. Since P((CAB)A L) =0 for any
P; satistying RL axioms, AI9 follows.
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Appendix B

Proposition .1 (3.4). Any function that satisfies the RL axioms also satisfies the

Weatherson four axioms, but not vice versa.

Proof. For P = RL =P = W:

Observe that (P0) is equivalent to the weak soundness theory of Roeper and Leblanc
(1999), while (P3) corresponds to their Lemma 6 (p.225, immediately provable from
RL axiom AI7 and AI9, both listed below in the appendix).

For (P1), we start with Lemma 10 (p.226), which states P(T A =T) = 0. Together
with the observation that L = =T, we get P(T A L) = 0. According to lemma 11
(p.226) and (P0), we have P(T A L) =P(L) =0.

For (P2), suppose A - B, then H A — B. By weak soundness, we have P(A —
B) = 1. By Lemma 12 (p.226), we have P(A) = P((A — B)AA). Since P(A — B) =1,
we have P((A — B) AN A) < P(AA B) by Lemma 9 (p.226). By Lemma 1 (p.225), we
have P(A A B) < P(B). We have thus established P(A) < P(B).

ForP=W % P = RL:

consider such P, defined as follows

1 if IPCF ¢
0 if IPC¥ ¢

P(p) =

where I PC' is intuitionistic propositional calculus.

It is easy to check that P satisfies Weatherson’s PO - P2.

Recall, P3 says: P(AV B) =P(A) + P(B) —P(A A B)
Case 1: IPC + A, and IPC + B, then P(AV B) = P(AAB) = P(A) =
P(B) = 1. P3 holds.
Case 2: IPCF A, but IPC¥F B, then P(AV B) =P(A)=1and P(AAB) =
P(B) = 0. P3 holds.
Case 3: IPC ¥ A, and IPC ¥ B, then IPC ¥ AV B, P(AV B) = P(A) =
P(B) =0 and P(A A B) = 0. P3 holds.

17
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To see how P [# RL, consider Axiom 8 of RL which states P((A D B) AC) =
rlr)lgz({IP’(C AND)P(DNA)YAB)=P(DANA)}

Let C' and D be tautologies, and A = =——B, and B be atomic. Then:

Since IPC¥F AD B, IPC¥F (ADB)ANC,P(ADB)ANC)=0.

Since B is atomic and A = =B, IPC ¥ (D ANA) A B and IPC ¥ D AN A. This
means P((D A A)AB) =0=P(D A A). We have rggzc{IF’(C’ A D)P((DANA)AB) =
P(DANA)} =1+#P((AD B)AC). This probability assignment does not satisfy RL’s
Axiom 8. O
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