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Abstract

This paper examines the plausibility of a thesis of probabilism that is based on

intuitionistic logic and exposits the difficulties faced by such a program. The

paper starts by motivating intuitionistic logic as the logic of investigation along

a similar line as Bayesian epistemology. It then considers two existing axiom

systems for intuitionistic probability functions – that of Weatherson (2003) and

of Roeper and Leblanc (1999) – and discusses the relationship between the two.

It will be shown that a natural adaptation of an accuracy argument in the style

of Joyce (1998) and de Finetti (1974) to these systems fails. The paper concludes

with some philosophical reflections on the results.

Intuitionism in mathematics refers to a class of programmes, more or less following

the tradition of Brouwer, that challenges the classical way of viewing what mathemat-

ics does and what is allowed to be taken for granted in the practice of mathematics.

Famously, intuitionism rejects the classical law of excluded middle (LEM), which states

that P ∨¬P can be asserted truthfully at any time, regardless of what P is. Intuition-

istically, P can only be asserted if there is some constructive procedure that establishes

P , whereas ¬P can only be asserted if there is some constructive procedure that leads

one to conclude, from P , a contradiction1. If one cannot accomplish either of these for

some given P , then one cannot assert P ∨ ¬P .

A major motivation behind this view in the philosophy of mathematics is that, if one

finds the idea of mathematical objects existing in an acausal Platonic heaven problem-

atic, then one is likely to also find the claim that we can make true or false statements

1The gloss here follows (roughly) the interpretation of intuitionistic logic found in Heyting (1956).
Different schools of intuitionism and constructive mathematics at large differ on what counts as a
legitimate constructive procedure, but this is beyond the point of the current paper.
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about mathematical objects we have never thought about before problematic. Instead,

intuitionists hold that statements about some generic, unknown mathematical object

do not have truth values until we can have a reasonably direct access to it through

construction.

One might have similar worries for sentences in non-mathematical domains. For

example, one might think that future contingents are, at the present time, neither true

nor false. This is raised by Weatherson (2003) as one of the considerations that might

cause one to question the law of excluded middle as it applies to future contingents. It

is not true, now, that there will be a sea battle tomorrow. Neither is it true, now, that

there won’t be. Hence, one cannot truthfully claim, now, that “either there will be,

or there won’t be, a sea battle tomorrow”. The view is that one should be allowed to

refrain from making claims about matthers about which one has no evidence one way

or another.

Intuitionistic logic thus has a natural, albeit underexplored, application to the

epistemology of evidence evaluation. “Subjective probabilistic semantics should yield

intuitionism”, declares Harman (1983), “since what settles a bet is not the mere truth

or falsity of a proposition but rather the discovery that the proposition is true or the

discovery that it is false”. Similarly, van Benthem (2009) observes that intuitionistic

logic registers “procedural information about our current investigative process” (p.255,

emphasis original). The thought is that the kind of “knowledge gap” that exists before

we have complete information on a subject matter is better reflected using a logic that

allows “truth value gaps” in a similar way.

In formal epistemology, the well established Bayesian tradition studies evidence

evaluation by developing formal procedures that guide one’s treatment of each piece

of relevant information. Central to Bayesian epistemology is the thesis of probabilism,

which states that a rational agent should have a credence function that obeys the

laws of probability theory (e.g. Jeffrey, 1992). Little attention has been paid to the

logic underlying such functions, but it has traditionally been assumed that the logic

is classical. LEM is either listed as an axiom (such as in Joyce, 1998) or derivable as

a consequence of defining probability functions from a Boolean algebra. Let us call

classical probabilism the thesis that requires a rational agent’s credence function to be

a classical probability function.

The current paper investigates the plausibility of an intuitionistic probabilism – one

that requires a rational agent’s credence functions to be intuitionistic probability func-
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tions. It does so by considering two existing axiom systems for intuitionistic probability

functions: that of Weatherson (2003) and of Roeper and Leblanc (1999). The paper

examines the relationship between these two systems and the difficulties of adapting an

accuracy argument in the style of Joyce (1998) and de Finetti (1974) to these systems.

It will be shown that neither of these two systems allows a straightforward adaptation

of the accuracy argument. This is partly due to the fact that there exist infinitely many

valuations even just for finitely many proposition letters (a result by Gödel, 1986, p.223

ff.). Having infinitely many valuation functions blocks the geometric intuition that is

necessary for the accuracy argument, because the argument relies on the existence of

some Euclidean-like distance that defines the inaccuracy measure. This feature is lost

in the transition from a space of finite dimensions to one of infinite dimensions.

The paper is organized as follows. Section 1 motivates the attempt at adapting

intuitionistic logic to Bayesian epistemology. Section 2 presents a brief formal intro-

duction to intuitionistic logic and its semantics. Section 3 introduces the two axiom

systems mentioned above. Section 4 discusses a natural way of generalizing the accu-

racy argument to the system of intuitionistic probability functions provided in Roeper

and Leblanc (1999) and argues that the natural proof strategy fails. It will be clear

how the failure of this adaptation also precludes the success of an adaptation of the

Weatherson axioms. Section 5 concludes with philosophical reflections on the results.

1 Intuitionism in epistemology

As briefly mentioned before, intuitionism in mathematics is (partly) motivated by a

skeptism over mathematical Platonism. The thought is that we would like to ground

the truth of mathematical claims not in some facts in a mind-independent world of

abstracta, but in some mind-dependent processes like proofs and constructions. Re-

latedly, if one would like to reject the mind-independent existence of mathematical

entities, then one would not want the meaning of mathematical claims to be depen-

dent on these (non-existent) entities in the same way that the sense of empirical claims

seem to depend on observable objects or properties. To address this worry, the in-

tuitionis holds that “the meaning of a sentence is to be given, not by the conditions

under which it is true, where truth is conceived as a relationship with some external

reality, but by the conditions under which it is proved, its proof conditions – where a

proof is a (mental) construction of a certain kind” (Priest, 2008, p.138).
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We may take the same considerations outside of mathematics and talk about ev-

idence instead of constructions and verification instead of proofs. That is, we may

require the assertion of a claim to be based on evidence in a strong sense, such that the

absence of evidence does not count as evidence of absence. Similarly, we might want

to have a theory of meaning where the meaning of a sentence is given not by its truth

conditions, but by its verification conditions.

This last consideration is also discussed in Weatherson (2003), who observes that

“[a] standard objection to classical Bayesianism is that it has no way of representing

complete uncertainty” (p. 114). Even if I have no evidence for or against p, the classical

Bayesian still requires me to assign credence 1 to the classical tautology p∨¬p. By the

Axiom of additivity, this means I must have non-zero credence assignment to p and to

¬p. If one does not want to give up additivity, one needs to seriously consider giving

up p ∨ ¬p as a tautology.

Here is another way of understanding the intuitionistic worldview. It is often said

that classical logic is the logic of truth. One way to think about classical possible worlds

is to see each world as a full description of a possible state of affairs or a maximally

consistent set of true sentences. That is, for every proposition, if it is not true at

a world, then its negation is true at that world (hence LEM). A classical world is a

possible version of reality, where every question has a definitive answer. Conversely,

an intuitionistic world is a state of knowledge during an investigation, where one has

a consistent set of beliefs but also open questions that need to be answered.

It is worth noting that intuitionistic logic is not the only, or even the primary,

logic that is used to handle truth gaps in the literature. There are a number of three-

valued logics that were designed to manage neither-true-nor-false sentences like fictional

contingents or future contingents as well as both-true-and-false sentences like the Liar

sentence (see, e.g., Priest, 2008). As we will discuss later in the paper, probabilism

behaves much better with finitely valued logics than it does with intuitionistic logic.

Nevertheless, intuitionistic logic has a natural place as the logic of investigation. A

truth gap in a fiction, such as the colour of Sherlock Holmes’s shirt on a particular day,

has a certain sense of inevitability to it – that is, it seems to be the kind of thing that

we cannot know in principle, because there is nothing to be known. Similarly, people

who reject classical logic for future contingents tend to do so because they believe that

future contingents do not yet have a truth value at all and so, again, are in principle

unknowable. Both of these ways of seeing truth gaps may motivate the introduction
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of a third truth value – an in principle unknowable value – which we can then develop

a logic for. However, an open question in an investigation is not especially different

from an answered question. They are formulated in similar ways and, presumeably,

call for the same kind of answers or answer strategies. The only difference is that one

is currently known and the other is currently unknown. Representing an open question

as a lack of truth values in the intuitionistic sense rather than as something completely

different in three-valued logics seems much more natural.

The above reasoning is not meant to be a knockdown argument for the superiority

of intuitionistic logic over three-valued logics in epistemology. Rather, it is meant to

motivate intuitionistic logic as a natural candidate to consider as a replacement of

classical logic.

To conclude this section, let me lay out the motivation once again: the central

feature of Bayesian epistemology is its ability to guide investigation and the resulting

changing of beliefs. The thesis of probabilism states that an agent’s system of cre-

dences needs to satisfy particular constraints in order to be successful in the Bayesian

framework. While classical logic is often said to be the logic of truth, intuitionistic

logic can be seen as the logic of investigation. Consequently, it is natural to examine

the plausibility of probabilism with intuitionistic logic as its underlying logic. The next

section lays out both the formal framework and the philosophical conceptualization of

what an intuitionistic probabilism might mean.

2 Kripke semantics for intuitionism

The use of Kripke semantics for intuitionistic logic is controversial. For example,

Dummett (1977, p.166) writes2:

Since intuitionistic logic is founded on a rejection of the whole notion of

objectively determined truth-values independent of our capacity for recog-

nizing them, it does not appear as if valuation systems are going to be

of any help towards formulating notions of completeness for intuitionistic

logic.

Later in this section, however, I will attempt to motivate the adoption of Kripke

semantics along the line of intuitionistic logic as the logic of investigation sketched out

2Troelstra and van Dalen (1988, p.75) express a similar worry about Kripke semantics in particular:
that it does not connect to the BHK interpretation of intuitionistic appoaches to mathematics.
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above. For a more extensive introduction to either Kripke semantics or other semantics

for intuitionism, see Troelstra and van Dalen (1988) and Chagrov and Zakharyaschev

(1997, Ch.2).

Formally, a Kripke model is given by a triple K = 〈K,≤,
〉, where K is a set of

worlds or nodes, ≤ is an asymmetric accessibility relation among those worlds, and 


is a forcing relation between worlds and propositions. A typical Kripke model is often

drawn as a tree structure3, where the accessibility relations “grow” only upward. An

example tree is given below4.

0

21
 P

The truth conditions for all nodes k ∈ K obey the following rules (see also Kripke,

1963; Troelstra and van Dalen, 1988, p.77).

• k 
 P and k ≤ k′ implies k′ 
 P .

• k 
 A ∧B if and only if k 
 A and k 
 B.

• k 
 A ∨B if and only if k 
 A or k 
 B.

• k 
 A→ B if and only if for all k′ with k ≤ k′, if k′ 
 A then k′ 
 B.

• k 
 ¬A if and only if for all k′ with k ≤ k′, k′ 1 A.

In the above toy model, we see that P and hence P ∨Q (where Q is arbitrary) are

both true at world 1. However, ¬P is true at world 2 but not at world 0. This means

that P ∨ ¬P is not true at world 0.

Connectives like ∨ and ∧ are treated straightforwardly in ways similar to classical

logic. The material conditional →, however, requires special care. Intuitionistically,

P → Q is true at a node just in case, for every node above it, if P holds then Q holds.

One side effect of this definition is that the equivalence between P → Q and ¬P ∨ Q

is not a valid in intuitionistic logic. Consider the following counter model:

3Strictly speaking, Kripke models are not proper trees, since it is permissible that the branches
merge. Since nothing hinges on this technical point, we will occasionally refer to these models as trees
for ease of presentation.

4The worlds need not be, and often are not, labelled. I have labelled them here for clarity of
explanation.
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3

5
 P,Q4

In this model, P → Q holds on all three nodes, and yet neither ¬P nor Q holds on

node 3, which means ¬P ∨Q does not hold on node 3.

Similarly, P ∧ Q is not equivalent to ¬(¬P ∨ ¬Q) like the classically valid De

Morgan’s law. To see this, consider the following counter model:

6

7
 P,Q

Here, ¬P ∨ ¬Q does not hold at 6, or 7, which means ¬(¬P ∨ ¬Q) holds at 6. But

P ∧Q does not hold at world 6.

The feature that ∧ and→ are not reducible to ¬ and ∨ will turn out to be significant

for our discussion of Dutch book arguments later. For now, let us focus on how a

probability theory can be built on intuitionistic logic.

To see how this semantics fits in with our narrative about investigations, notice

first that the nodes at the end of the branches are classical. That is, every proposition

is either forced on that node, or its negation is. Further, if node j follows node i,

or i ≤ j in our notation, then the set of propositions true in i is a subset of the

propositions true in j. A branch, then, can be seen as an investigative path, where

more and more information are acquired as we move from node to node, and the path

leads to a possible state of affairs. Finally, we can interpret a tree as a theory (in the

nontechnical sense) about the different ways in which an investigation may unfold.

In the classical setting, each world assigns a valuation 0 or 1 to each proposition p.

Suppose a number n of worlds are indistinguishable to me (i.e., my information state

is insufficient to pick out the real world), and they differ on their valuations of p, then

I assign a probability of p between 0 and 1. Formally, suppose we have v1, . . . , vn as

valuations of n worlds. Suppose further we have constants a1, . . . , an, with 0 ≤ ai ≤ 1

and
∑n

i=1 ai = 1. Then, classically, Pr(P ) =
∑n

i=1 aivi(P ) is a probability function.

This type of weighted averaging of valuations is often called convex combinations,

or probabilistic averages, of valuations. These functions form the convex hull of the

valuations, which is the smallest convex set containing the valuations (Aliprantis and

Border, 2006, p.182-183). It is a key insight of de Finetti (1992) that the “coherent”

credence functions are exactly those that form the convex hull of classical truth values.
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This grounds the important geometric intuitions that support the later stages of the

accuracy argument (e.g., Joyce, 1998, p.582-3 and Pettigrew, 2016, p.82, 107 ff.).

Moving to the intuitionistic setting, we can make sense of probability in a similar

way. We can treat each tree as a world in the sense that we can see a number of different

investigative paths being compatible with our current state, and they may lead to a

number of different conclusions. However, I may be wrong about what the current

state is (i.e. which tree structure I’m working with), as well as which investigative step

I’m currently at (i.e., which node I’m on).

In the current paper, I will treat convex combinations of intuitionistic valuation

functions in what I consider as a natural way, following the above narrative. Let w be

valuation functions on nodes. For any proposition P on any node i of a Kripke tree,

wi(P ) = 1 if that node forces P , wi(P ) = 0 if it does not. For a Kripke tree with

m many nodes, let there be b1, . . . , bm with 0 ≤ bi ≤ 1 and
∑m

i=1 bi = 1, let us set

v(P ) =
∑m

i=1 biwi(P ). That is, v of P of a model is the convex combination of the pure

world valuation of the nodes. We then define probability of P as convex combination

of v’s of different models in the same way: Pr(P ) =
∑n

i=1 aivi(P ) for 0 ≤ ai ≤ 1 and∑n
i=1 ai = 1. Philosophically, one can interpret this as an agent’s not being able to

discern which structure is the true structure and which world in that structure is the

true world. In what follows, I call any functions that can be derived in the above way

convex combinations of intuitionistic valuation functions.

3 Two systems of intuitionistic probability

This section introduces two existing sets of axioms for intuitionistic probability func-

tions, and discusses their relationship.

Weatherson (2003) introduces a 4-axiom system that he adapts from the classical

3-axiom system of Kolmogorov (1960) they are as follows:

• (P0) P(>) = 1

• (P1) P(⊥) = 0

• (P2) If A ` B then P(A) ≤ P(B)

• (P3) P(A ∨B) = P(A) + P(B)− P(A ∧B)
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He then develops a Dutch book argument and a converse Dutch book argument for

these axioms. I will briefly mention the implications of these arguments later in this

section. It is worth noting that, in Weatherson’s set up, if I buy into a bet on p and

¬(p ∨ ¬p) happens, then I lose the bet on p. This way of setting up the bet blurs

the distinction between intuitionistic logic and three-valued logics. As we will see, this

difference is significant for accuracy argument.

Another feature to note about these axioms is that they are fairly opaque. With

classical probability functions, one only needs three axioms describing the behaviour

of ¬ and ∨. Classical logic is semantically complete with just those two connectives.

However, as we saw in section 2, connectives like → and ∧ are not interdefinable with

¬ and ∨. We should expect an adequate axiom system of intuitionistic probability

function to also guide us on our treatment of those connectives.

The axiom system provided in Roeper and Leblanc (1999) is significantly more

expansive for just this reason. Their system contains 9 axioms (listed in Appendix A).

In addition to giving explicit rules governing connectives like ∧ and →, these axioms

also have the following nice properties (Roeper and Leblanc, 1999, p.229, 231):

Theorem 3.1 (Weak Soundness). If P is any absolute probability function for intu-

itionistic propositional logic and A any theorem of that logic, then P (A) = 1.

Theorem 3.2 (Weak Completeness). If A is a statement of L that is not a theorem

of intuitionistic propositional logic, then there exists an absolute probability function P

for intuitionistic propositional logic with P (A) 6= 1.

More relevant to our narrative, these axioms – I shall call them the RL axioms –

are developed using a Kripke semantics in the way described in section 2 above. In

the process of proving the weak completeness theorem, Roeper and Leblanc showed

that the average of all the nodes on a Kripke tree satisfies the RL axioms. With the

following proposition (proved in Appendix A)

Proposition 3.3. If P1, . . . Pi, . . . satisfy the RL axioms, and a1, . . . ai, . . . are such

that 0 ≤ ai ≤ 1, and
∑∞

i=1 ai = 1, then P =
∑∞

i=1 aiPi also satisfy the RL axioms.

one can conclude that any probability function generated in the way described in

section 2 satisfy the RL axioms.

We now have two axiom systems that are both well motivated as candidate ax-

iomatizations of intuitionistic probability functions: the Weatherson axioms for their
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natural adaptation from classical probability axioms, whereas the RL axioms for their

nice properties relating to Kripke semantics for intuitionistic logic. Unfortunately,

these two axiom systems do not coincide (proved in Appendix B):

Proposition 3.4. Any function that satisfies the RL axioms also satisfies the Weath-

erson four axioms, but not vice versa.

As briefly mentioned before, the Dutch book arguments presented in Weatherson

(2003) do not distinguish between intuitionistic logic and a three-valued logic where

the third value behaves like falsity. But if one does find his arguments convincing, the

above proposition would lead one to conclude that the RL axioms are necessary but

not sufficient to define intuitionistic probability functions. As we shall see in the next

section, this question becomes a lot more complicated once we dig deeper into exactly

what we take an intuitionistic probability function to be.

4 Accuracy argument

This section examines the prospect of an accuracy argument for intuitionistic probabil-

ism. I first identify key elements of the classical accuracy argument, before providing

a detailed explanation on how one of them fails for one system of intuitionistic prob-

ability. I conclude this section with some remarks on additional difficulties faced by

intuitionistic probabilism.

The accuracy argument for classical probabilism can be roughly separated into

three steps (cf. de Finetti, 1992, Joyce, 1998, Pettigrew, 2016). Firstly, one shows

that classical probability functions are exactly those that are convex combinations of

classical valuation functions. Secondly, one shows that one can understand inaccuracy

as a “distance” measure between a credence function and a valuation function. Finally,

one observes that, due to convexity of the probability functions, any credence function

that is not probabilistic has a probabilistic projection that is closer (by the inaccuracy

distance measure) to all the valuation functions. The below argument concerns the

first step of this argument for the RL axioms.

Classically, the axioms of Kolmogorov coincide with convex combinations (also

often called “probabilistic combinations”) of classical valuations because the worlds

are taken to form a Boolean algebra. Intuitionistically, however, this has to be argued

for. This is because intuitionistic valuations are interdependent among worlds. In fact,
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one can show that the functions defined by the RL axioms do not coincide with convex

combinations of intuitionistic worlds, at least in the way defined in section 2.

To see this, we need to look at another standard result from intuitionistic logic.

Given that both modal logic and intuitionistic logic can be based on Kripke frames, it

should not be surprising that there are similarities between the metatheories of these

two branches of nonclassical logic. In particular, just as there are metatheorems in

modal logic which relate validities to frame conditions, so there are metatheorems in

intuitionistic logic which relate validities to frame conditions. One of these states that

one can define a formula (cf. Chagrov and Zakharyaschev, 1997, p.44, Proposition

2.40)

ϕn = p0 ∨ (p0 → p1) ∨ · · · ∨ ((p0 ∧ · · · ∧ pn−1)→ pn) (1)

for each n ≥ 1, such that:

Proposition 4.1. A frame K = 〈W,R〉 validates ϕn iff each rooted subframe of K

contains ≤ n points.

Using this formula, we can find a probability function P that satisfies the RL axioms,

but cannot be written as a convex combination of intuitionistic valuation functions.

The construction of this probability function proceeds as follows. Firstly, find a series

of rooted frames, K1, K2, . . . , each Ki containing exactly i many nodes. For each

frame Ki, define a probability function PKi
such that it satisfies RL axioms, and

PKi
(ϕi−1) < 1, where ϕ0 is chosen to be some classical contradiction. This is possible

for all i, since the rooted frame Ki has more than i − 1 many nodes, and hence does

not validate ϕi−1 by Proposition 3.4.

Define P =
∑∞

i=1 2−iPKi
. Since 0 < 2−i < 1 and

∑∞
i=1 2−i = 1, and all PKi

satisfy RL axioms, P satisfies RL axioms by Proposition 3.3. Suppose, for the sake of

reductio, that P can be written as convex combination of valuation functions vj. That

is, there are finite models L1, . . . , Ln such that vL1 , . . . , vLn are valuation functions of

L1, . . . , Ln in the way described in section 2.2. By reductio hypothesis, P =
∑n

i=1 aivi

for some 0 < ai < 1 and
∑n

i=1 ai = 1. Each Li has some number of nodes that is

less than some large natural number N . By Proposition 3.4, L1 . . . Ln all validate ϕN .

This means that each valuation function has to assign 1 to ϕN , and so P(ϕN) = 1.

However, we have defined P =
∑∞

i=1 2−iPKi
, such that PKN+1

(ϕN) < 1. We arrive at a

contradiction.
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The above serves as a proof for the following theorem:

Theorem 4.2. There exists a function P that satisfies the RL axioms for intuition-

istic probability functions, but is not in the convex hull of the intuitionsitic valuation

functions.

Together with Proposition 3.4, we arrive at the following conclusion: the convext

combinations of intuitionistic valuations form a proper subset of functions satisfying the

RL axioms, which in turn form a proper subset of functions satisfying the Weatherson

axioms.

How should we make sense of the above result? A modest conclusion is that the RL

or the Weatherson axioms for intuitionistic probability and the valuation functions as

defined in section 2 do not fit together in the way classical accuracy argument demands.

This might mean that we need to add additional axioms to the RL system, or that there

is a better way of defining intuitionstic valuation functions, or that the intuitionistic

accuracy argument, if there is one, is radically different from its classical counterparts.

Moreover, there is something intrinsically unfitting between the ideas of intuition-

istic epistemology and accuracy dominance. Suppose we have somehow bypassed the

above problem, and established that intuitionistic probability functions are exactly

those that are convex combinations of intuitionistic valuation functions, however de-

fined. The next step should be to define some kind of “distance from the truth”

measure that we then argue to be shorter for elements of the convex set than elements

from outside. In classical probabilism, the preferred score is the “Brier score”, which

is defined as (v(P ) − c(P ))2 for any credence function c, valuation function v, and

proposition P . For example, if I give P a probability of 0.6 and P is in fact true, then

the inaccuracy measure for my credence is calculated as (1− 0.6)2 = 0.16.

The problem with generalizing something like the Brier score to the intuitionistic

setting is that there are infinitely many intuitionistic valuations, even when there are

only finitely many atomic propositions (Gödel, 1986, p.223 ff.). Hence, the natural

geometric intuitions which motivate the Brier score are not obviously available in the

intuitionsitic setting. To see why, consider how we visualize the “inaccuracy distance”

between an estimation of a proposition and the possible valuations of that proposition:

we usually see the two possible valuations T and F as the end points of the two axis on

a two-dimensional plain, where the points on the plain represent the agent’s crendence

on the truth and falsity of that proposition. The “distance” between a credence and
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the true answer is then understood as the geometric distance between the two points5.

This is the most natural way of understanding what is meant for a credence judgment

to be “closer to” or “further away from” a valuation. As our world includes more and

more sentences, the dimension of this geometry increases. However, as long as we don’t

have infinitely many valuations (which can be guaranteed, classically, by only having

finitely many propositions), the same geometric intuition holds. The transition from

this straightforward intuition on Euclidean distance to the case of infinite dimensions is

a much more radical one, but it is one that an adequate adaption of accuracy argument

to intuitionistic probabilism needs to face.

5 Concluding remarks

Those who would like to investigate non-classical probabilism are likely to be moti-

vated by skepticisms over future contingents or completely unknown propositions in a

way discussed in section 1. One key difference between someone who is epistemically

concerned in this way and someone following the traditional mathematical intuitionism

line is that, for the epistemist, the world is still fundamentally classical. Consequently,

a successful thesis of probabilism has to assess the performance of probabilistic credence

functions against a classical world. Intuitionistic logic is much more faithful to the di-

alectic of an incomplete investigation in a classial world than the kind of three-valued

logics investigated in Williams (2012), where the world is treated as three-valued as

well. This unique philosophical advantage is, I believe, largely responsible for the for-

mal difficulties witnessed in this paper. It is much easier to say “the world is n-valued

and so our credence functions should base on an n-valued logic” than it is to match

an infinite-valued credence function with a bivalent world. Of course, all the formal

difficulties are not meant to discount the philosophical considerations associated with

this narrative. The lesson might just be that we should radically restructure what we

think arguments for probabilism should be like if we want to develop an intuitionistic

probabilism.

On the other hand, one might worry that there exists a kind of “double-counting”

with this approach. Suppose I receive a piece of information, p, that is supposedly rel-

evant to some other proposition, q, how should I adjust my assessment of q? Bayesian

epistemology suggests that I raise or lower my existing probability of p, whereas intu-

5For a more detailed exposition on scoring rules, see Pettigrew (2016).
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itionistic logic following the narrative of the current paper suggest that I, as it were,

add p to my q-information collection. Once I finish my collection, I can declare q true

(or false). These two procedures seem to be parallel ways of achieving the same end. A

forciful combination of them may create limitations that neither procedure possesses

on their own.

In this paper, I started by drawing attention to a natural connection between in-

tuitionistic logic and epistemology, and used it to motivate a thesis of probabilism

where the underlying logic is intuitionistic. I then described intuitionistic semantics

and pointed out some difficulties in defining intuitionistic probability functions. After

that, I took a closer look at the axioms provided in Weatherson (2003) and Roeper

and Leblanc (1999), and discussed the relationship between the two. Finally, I showed

how one natural adaptation of the accuracy argument to intuitionistic probabilism fails

for both of these systems. I ended the paper with some philosophical advantages and

reservations on the project of intuitionistic probabilism.

Appendix A

Let L be a set of propositions in a language. Roeper and Leblanc (1999) list the

following 9 axioms for what they call absolute intuitionistic probability functions.

AI1. 0 ≤ P (A)

AI2. max
A∈L
{P (A)} = 1

AI3. max
B∈L
{P (A ∧B)} = P (A)

AI4. P (A ∧B) ≤ P ((A ∧B) ∧B)

AI5. P (A ∧ (B ∧ C)) = P (A ∧ (C ∧B))

AI6. P (A ∧ (B ∧ (C ∧D))) = P (A ∧ ((B ∧ C) ∧D))

AI7. P (A ∧ (B ∨ C)) = P (A ∧B) + P (A ∧ C)− P (A ∧ (B ∧ C))

AI8. P ((A ⊃ B) ∧ C) = max
D∈L
{P (C ∧D)|P ((D ∧ A) ∧B) = P (D ∧ A)}

AI9. P (A ∧ ¬B) = max
C∈L
{P (A ∧ C)|P (C ∧B) = 0}

The goal of this appendix is to show the following
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Proposition (3.3). If P1, . . . Pi, . . . satisfy the RL axioms, and a1, . . . ai, . . . are such

that 0 ≤ ai ≤ 1, and
∑∞

i=1 ai = 1, then P =
∑∞

i=1 aiPi also satisfy the RL axioms.

Proof. AI1 and AI2 are obviously satisfied by P.

For AI3, observe that

max
B∈L
{
∞∑
i=1

aiPi(A ∧B)} ≤
∞∑
i=1

max
B∈L
{aiPi(A ∧B)}

Then we have

∞∑
i=1

max
B∈L
{aiPi(A ∧B)} =

∞∑
i=1

ai max
B∈L
{Pi(A ∧B)} =

∞∑
i=1

aiPi(A)

This means

max
B∈L
{P(A ∧B)} = max

B∈L
{
∞∑
i=1

aiPi(A ∧B)} ≤
∞∑
i=1

aiPi(A) = P(A)

For the other direction, we have

P(A) =
∞∑
i=1

aiPi(A) =
∞∑
i=1

aiPi(A ∧ A) ≤ max
B∈L
{
∞∑
i=1

aiPi(A ∧B)} = max
B∈L
{P(A ∧B)}

The proofs of AI4-7 are similar. I will give the proof of AI7 in detail as illustration.

P(A ∧B) + P(A ∧ C)− P(A ∧ (B ∧ C))

=
∞∑
i=1

aiPi(A ∧B) +
∞∑
i=1

aiPi(A ∧ C)−
∞∑
i=1

aiPi(A ∧ (B ∧ C))

=
∞∑
i=1

ai
(
Pi(A ∧B) + Pi(A ∧ C)− Pi(A ∧ (B ∧ C))

)
=
∞∑
i=1

aiPi(A ∧ (B ∨ C))

=P(A ∧ (B ∨ C))

For AI8, consider Lemma 9 of Roeper and Leblanc (1999, p.226), we have P (((A ⊃
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B) ∧ A) ∧B) = P ((A ⊃ B) ∧ A).

Setting D = A ⊃ B, we have P((D ∧ A) ∧ B) =
∑∞

i=1 aiPi((D ∧ A) ∧ B) =∑∞
i=1 aiPi(D ∧ A) = P(D ∧ A) by Lemma 9. This means

P((A ⊃ B) ∧ C) = P(D ∧ C) ≤ max
D∈L
{P(C ∧D)|P((D ∧ A) ∧B) = P(D ∧ A)}

For the other direction, consider a D that satisfies P((D ∧ A) ∧ B) = P(D ∧ A).

This means
∑∞

i=1 aiPi((D ∧A) ∧B) =
∑∞

i=1 aiPi(D ∧A). First, we need to show that

for each i, Pi((D ∧ A) ∧B) = Pi(D ∧ A).

To see this, consider Lemma 1 of Roeper and Leblanc (1999, p.225), which states

P (A∧B) ≤ P (A). This means Pi((D∧A)∧B) ≤ Pi(D∧A) for each Pi satisfying the

RL axioms.

Let I = {i : Pi((D ∧ A) ∧ B) = Pi(D ∧ A)} and let J = {j : Pj((D ∧ A) ∧ B) <

Pj(D ∧A)}. Since the numbers are all non-negative, we have
∑∞

i=1 Pi((D ∧A)∧B) =∑
i∈I Pi((D∧A)∧B)+

∑
j∈J Pj((D∧A)∧B) and likewise

∑∞
i=1 Pi(D∧A) =

∑
i∈I Pi(D∧

A) +
∑

j∈J Pj(D ∧ A). By hypothesis, the two sums indexed by i ∈ I are equal. But

then we are left with
∑

j∈J Pj((D ∧ A) ∧ B) =
∑

j∈J Pj(D ∧ A). This means that the

set J must be empty. Namely, Pi((D ∧ A) ∧B) = Pi(D ∧ A) for all i.

We now have that, for all D with P((D ∧ A) ∧ B) = P(D ∧ A), we must have

Pi((D ∧ A) ∧ B) = Pi(D ∧ A) for all i for that D as well. Since all Pi satisfies AI8,

we have Pi((A ⊃ B) ∧ C) = maxD∈L{Pi(C ∧D)|Pi((D ∧ A) ∧ B) = Pi(D ∧ A)}. This

means

∞∑
i=1

aiPi((A ⊃ B) ∧ C) =
∞∑
i=1

ai max
D∈L
{Pi(C ∧D)|Pi((D ∧ A) ∧B) = Pi(D ∧ A)}

≥ max
D∈L
{
∞∑
i=1

aiPi(C ∧D)|Pi((D ∧ A) ∧B) = Pi(D ∧ A)}

P((A ⊃ B) ∧ C) ≥ max
D∈L
{P(C ∧D)|P((D ∧ A) ∧B) = P(D ∧ A)}

For AI9, since we have ¬B ≡ B ⊃ ⊥. By AI8, we have P(A ∧ (B ⊃ ⊥)) =

maxC∈L{P(A ∧ C)|P (C ∧ B) = P((C ∧ B) ∧ ⊥)}. Since Pi((C ∧ B) ∧ ⊥) = 0 for any

Pi satisfying RL axioms, AI9 follows.
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Appendix B

Proposition .1 (3.4). Any function that satisfies the RL axioms also satisfies the

Weatherson four axioms, but not vice versa.

Proof. For P |= RL⇒ P |= W :

Observe that (P0) is equivalent to the weak soundness theory of Roeper and Leblanc

(1999), while (P3) corresponds to their Lemma 6 (p.225, immediately provable from

RL axiom AI7 and AI9, both listed below in the appendix).

For (P1), we start with Lemma 10 (p.226), which states P(>∧ ¬>) = 0. Together

with the observation that ⊥ ≡ ¬>, we get P(> ∧ ⊥) = 0. According to lemma 11

(p.226) and (P0), we have P(> ∧⊥) = P(⊥) = 0.

For (P2), suppose A ` B, then ` A → B. By weak soundness, we have P(A →
B) = 1. By Lemma 12 (p.226), we have P(A) = P((A→ B)∧A). Since P(A→ B) = 1,

we have P((A→ B) ∧ A) ≤ P(A ∧ B) by Lemma 9 (p.226). By Lemma 1 (p.225), we

have P(A ∧B) ≤ P(B). We have thus established P(A) ≤ P(B).

For P |= W ; P |= RL:

consider such P, defined as follows

P(ϕ) =

1 if IPC ` ϕ

0 if IPC 0 ϕ

where IPC is intuitionistic propositional calculus.

It is easy to check that P satisfies Weatherson’s P0 - P2.

Recall, P3 says: P(A ∨B) = P(A) + P(B)− P(A ∧B)

Case 1: IPC ` A, and IPC ` B, then P(A ∨ B) = P(A ∧ B) = P(A) =

P(B) = 1. P3 holds.

Case 2: IPC ` A, but IPC 0 B, then P(A∨B) = P(A) = 1 and P(A∧B) =

P(B) = 0. P3 holds.

Case 3: IPC 0 A, and IPC 0 B, then IPC 0 A ∨ B, P(A ∨ B) = P(A) =

P(B) = 0 and P(A ∧B) = 0. P3 holds.
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To see how P 6|= RL, consider Axiom 8 of RL which states P((A ⊃ B) ∧ C) =

max
D∈L
{P(C ∧D)|P((D ∧ A) ∧B) = P(D ∧ A)}

Let C and D be tautologies, and A = ¬¬B, and B be atomic. Then:

Since IPC 0 A ⊃ B, IPC 0 (A ⊃ B) ∧ C, P((A ⊃ B) ∧ C) = 0.

Since B is atomic and A = ¬¬B, IPC 0 (D ∧ A) ∧ B and IPC 0 D ∧ A. This

means P((D ∧ A) ∧ B) = 0 = P(D ∧ A). We have max
D∈L
{P(C ∧D)|P((D ∧ A) ∧ B) =

P(D ∧ A)} = 1 6= P((A ⊃ B) ∧ C). This probability assignment does not satisfy RL’s

Axiom 8.
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